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ABSTRACT
Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extreme
conditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a frame-
work is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50
is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physical
properties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change are
successfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relatively
insensitive to the strain rate γ̇ when γ̇ ranges from 7.5 × 108 to 2 × 109/s, which are values reachable in QIC experiments, with a magnitude
of the order of 10−2kB/atom per GPa. However, when γ̇ is extremely high (>2 × 109/s), a notable increase in entropy production rate with
γ̇ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated that
entropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase in
configurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponen-
tial relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamental
relation between microstructure evolution and plastic dissipation.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0176138

I. INTRODUCTION

Dynamic compression, including adiabatic shock compression
(ASC) and quasi-isentropic compression (QIC), is of significant
interest in inertial confinement fusion,1–6 laboratory astrophysics,7,8

and other high-pressure environments.9,10 In general, QIC is a pro-
cess that lies between ASC and the conceptual nondissipative isen-
tropic compression (ISE), but is closer to ISE in most cases.11–19 By

contrast, ASC produces massive amounts of heat and entropy, eas-
ily leading to melting.12,19 The heating caused by plastic deformation
usually echoes the increase in entropy in these types of compression
and significantly affects the states of solids along the compression
path. On the other hand, the microstructure that is created by plastic
deformation and carries plasticity exhibits substantial dissimilari-
ties between QICs with different strain rates and ASC.20,21 However,
despite its importance, there is still only limited understanding of the
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relationship between plasticity and entropy production in dynamic
compression.

The temperature increase ΔT in QIC can be decomposed
into two components: the isentropic temperature increase ΔTise
and the excess temperature increase ΔTexcess. The former is
caused by a reduction in atomic spacing and is reversible upon
decompression,22,23 and it should be path-insensitive. The latter,
which echoes the entropy increase, is irreversible upon decompres-
sion and can be path-sensitive (e.g., rate-sensitive).24,25 It is generally
supposed that ΔTexcess is produced in solids by thermomechanical
conversion from plastic work, which is associated with evolution of
strength and microstructure. It is also generally accepted that the
yield strength of a given metal may undergo an abrupt increase when
the strain rate increases beyond 106/s.26–33 Such an increase in
strength can be described by semiphenomenological models such
as the Zerilli–Armstrong model,34 the Preston–Tonks–Wallace
model,35 and the Steinberg–Guinan model.36,37 Characterization
of microstructure evolution in dynamic compression have bene-
fited very much from recent progress in dynamic x-ray diffraction
(DXRD) technique and atomistic simulations. Phenomena includ-
ing the transition from dislocation-dominated to twin-dominated
plasticity and variations in dislocation and pattern as the strain
rate increases in QIC have been observed both numerically and
experimentally.20,21,38,39 On the other side, a temperature rise can
have a significant impact on the properties of solids, including
changes in the elastic modulus,28,40 the initiation of phase tran-
sitions under extreme conditions,27,41,42 and inevitably changes in
strength.26,28,30,43 In addition, ΔTexcess under compression might
cause an additional thermoelastic volumetric change,32,44,45 leading
to another coupling in solids between the isotropic and deviatoric
responses, described by the equation of state and the strength model,
respectively. The understanding of temperature increase is crucial to
obtaining an understanding of these couplings and predicting the
variation of related properties.18 Unfortunately, it is not feasible to
infer ΔTexcess from temperature data, owing to both experimental
and theoretical challenges.

To estimate ΔTexcess and quantify entropy production, one
method is to use elastoplastic hydrodynamic simulations with a con-
tinuum model (the Taylor–Quinney factor βint)

31,32,46–48 or discrete
dislocation dynamics,49 which assumes that solids convert plastic
work to heat in a constant ratio.46 Although the typical range of
βint is 0.9–1.0 in elastoplastic hydrodynamic simulations of dynamic
compression, βint has been shown to vary with factors such as strain,
strain rate, and internal material structure in deformations in the
absence of hydrodynamic pressure.50–54 In particular, Lazicki et al.27

have recently used DXRD to determine solid carbon phases in
QIC and have conjectured that βint for solid carbon may vary
between 0.5 and 0.9. A similar technique has also been utilized
to assist the development of strength models.55 Several atomistic
simulations have shown that βint for plastic deformations under
ambient conditions varies with crystal structure.56,57 Despite this
limited progress, there is still a lack of experimental knowledge of
βint at extremely high strain rates (>105/s), hindering understanding
QIC in terms of entropy production.

From the perspective of statistical physics, entropy production
is related to heat flow between the atomic vibrational subsystem
and the configurational subsystem.58–64 The entropy increase con-
tains contributions from both of these subsystems. The former is

related to plastic heating, reflecting the portion of plastic work con-
verted into heat, βintWp. The latter should be correlated with the
pattern of microstructures, which also store a portion of plastic work
as what is known as cold energy, (1 − βint)Wp.57,61,65 The inter-
play between plastic heating and microstructure evolution is a very
unclear dynamic process. In general, the free energy of a system has
the form U − TS, in which U is internal energy and S is entropy. Plas-
tic heating and cold energy both have contributions from changes in
both U and TS. Berdichevsky66–68 has pointed out that the lack of
a plasticity model with satisfactory predictive capability may stem
from the fact that our understanding of entropy for microstruc-
tures, which should serve as a key thermodynamic parameter, is very
limited. Rao et al.69 and Xiao et al.70 have implemented the idea
mentioned above to develop a two-temperature strength model for
glassy systems. However, there is a lack of any direct link between
microstructure characterization and thermodynamic entropy.

Our work reported here aims to provide thermodynamic
insights into plastic deformation in QIC. For simplicity, a material
that is isotropic, namely, metallic glass (MG), is taken as the model.
We establish a partition of plastic work into heating and stored
energy, quantify entropy production, derive its relationship with
plastic work, and establish a partition into vibrational and config-
urational parts. The remainder of the article is organized as follows.
Section II discusses the definition of a quasi-isentrope, on the basis of
which simulation methods are developed and quasi-isentropic com-
pression is demonstrated. Section III provides a detailed description
of our analytical framework. Calculation of entropy production
and its relationship with plasticity in nonequilibrium molecular
dynamics (NEMD)-QIC are presented in Sec. IV. Section V presents
conclusions.

II. SIMULATION AND DEFINITION
OF QUASI-ISENTROPE
A. Metallic glass sample preparation
and consideration

A typical MG, Cu50Zr50, is chosen as the research model for
three reasons. First, the isotropic nature of an MG allows simple
mechanical analysis of, for example, strain decomposition. Second,
size effects in molecular dynamics simulations of MGs are rela-
tively smaller than in crystalline materials; see, for example, cases
1 and 2 in Ref. 71 and the results provided in the supplementary
material. These small size effects in MGs are due to the fact that
the mechanical interactions of an MG’s structural units decay as
1/r∼2 rather than the 1/r decay exhibited by dislocations in crys-
talline materials.72 Third, the free energy and entropy during heating
have been well studied in Ref. 73, providing a benchmark for our cal-
culations. A small MG sample (S-Sample), containing 4000 atoms
(dimensions 4 × 4 × 4 nm3), is prepared by rapid quenching from
2000 to 0.1 K in 200 ns. Subsequently, the sample is heated for
100 ps to 600 K, followed by relaxation at 600 K for 50 ns, after
which it is cooled gradually to the target temperature. The glass
transition temperature Tg of the sample is ∼620 K, as reported in
Ref. 73. The atomic interaction in the MG is described by the embed-
ded atom method (EAM) potential.74 All simulations are carried out
using the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) package.75,76 Timesteps are 1 fs for all simulations
in this article. In contrast to the conventional usage in mechanics,
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positive values denote compressive stress and strain in this work,
whereas negative values indicate tensile stress and strain.

B. Quasi-isentropic compression simulations
Nonequilibrium molecular dynamics (NEMD) simulation are

is employed to create quasi-isentropic compression of the MG. In
particular, as well as ramp compression,21,24 another two artifi-
cial compressions are also simulated and analyzed, as depicted in
Fig. 1(a), to exclude other potential dissipative mechanisms and to
verify the validity of the proposed framework. The first compres-
sion method is uniaxially adiabatically compression (UC-QIC) of
the S-Sample with controlled strain rate and no pressure and tem-
perature control (NVE). UC-QIC results in a uniaxial strain state
(εn ≡ εzz = Δρ/ρ > 0 and εt ≡ εxx = εyy = 0, where x, y and z are Carte-
sian coordinates, n represents the compressional direction, and t is
orthogonal to n). Periodic conditions are applied to the x, y, and
z directions. The computational cost of UC-QIC is relatively low,
and therefore the effects of both size and strain rate in uniaxial com-
pression are tested by UC-QIC cases. The results show that both
the size effect and the effect of strain rate >108/s on yield strength
and temperature rise in UC-QIC are negligibly small (see Fig. S7,
supplementary material).

The second compression method in this study is based on
NEMD simulation of ramp wave propagation (NEMD-QIC) in a
long sample (L-Sample), also leading to a uniaxial strain state.
NEMD-QIC simulates experimental QIC. The L-Sample, contain-
ing 3 × 107 atoms, has dimensions 20 × 20 × 1200 nm3, obtained
by repeating the S-Sample 5 × 5 × 300 times. A flyer, whose
particle velocity increases from zero to 1200 m/s in a rise time
trise, moves from the lower end toward the upper end of the
L-Sample, generating a ramp wave propagating toward the upper
end within the sample along the z direction. Periodic conditions are
applied to the x and y directions. NEMD-QIC is characterized by

trise, during which time the pressure and density increase smoothly
to a peak, as described in Refs. 21 and 24. trise is related to the strain
rate according to γ̇∝ 1/trise. The rise time and propagation distance
(L∝ Ctrise, where C is the wave velocity) achieved in NEMD-QIC
are at least an order of magnitude lower than those in experiments.

The third compression method is “pseudo” isentropic com-
pression (pISE) achieved through isotropic adiabatic compression
of the S-Sample without pressure and temperature control (εn = εt
= 1

3 Δρ/ρ > 0), with periodic conditions along the x, y, and z direc-
tions. Note that NEMD-QIC results in spatial thermodynamic gra-
dients (∇ρ,∇T,∇P, . . .) along the wave propagation direction n. By
contrast, these gradients are not present in UC-QIC and pISE.

The three compression methods can lead to several potential
candidate dissipative mechanisms,31,32 with plasticity possibly being
dominant. The first mechanism is linked to the uniaxial strain state,
which results in an increase in deviatoric strain (γ ≡ εzz − εyy > 0)
and subsequently yields plastic deformation in solids. The second
is based on the familiar concept of artificial bulk viscosity77 acting in
the presence of a pressure gradient. The third is heat conduction due
to the presence of a temperature gradient. All of these mechanisms
can produce excess temperature and entropy increase. In contrast
to NEMD-QIC, for UC-QIC, only plastic deformation is a candi-
date dissipative mechanism, owing the absence of gradients. Note
that pISE provides a nondissipative compression benchmark. The
term “pseudo” implies a small deviation from a perfect isentrope.
Figures 1(b) and 1(c) demonstrate that the P–ρ–T paths in NEMD-
QIC and UC-QIC almost completely overlap with that in pISE in
early-stage compression, indicating that the behavior in this regime
is consistent with an ideal isentrope. Dissipation may begin to appear
in NEMD-QIC and UC-QIC at ρ/ρ0 ≈ 1.1, where, as we will show
later, yielding occurs, resulting in a significant deviation from pISE
as depicted in Fig. 1(b).

We must stress that a comparison of the results for NEMD-QIC
and UC-QIC in Fig. 1(b) may lead to an illusion that the pressure

FIG. 1. (a) Illustrations of three different compression simulations: pISE, UC-QIC, and NEMD-QIC. (b) and (c) Thermodynamic paths undergone by Cu50Zr50 metallic glass
subjected to pISE, UC-QIC, and NEMD-QIC at an equivalent strain rate of ∼7.5 × 108/s.

Matter Radiat. Extremes 9, 027802 (2024); doi: 10.1063/5.0176138 9, 027802-3

© Author(s) 2024

https://pubs.aip.org/aip/mre


Matter and
Radiation at Extremes

RESEARCH ARTICLE pubs.aip.org/aip/mre

and temperature gradient contribute to the temperature increase in
NEMD-QIC. However, we argue that the temperature increase
induced by heat conduction in ramp compression at low pressure
is negligibly small. The thermal conductivity κ of our MG sample is
calculated by the Green–Kubo method,78 which relates the ensem-
ble average of the autocorrelation of the heat flux J to κ through
κ = (V/3kBT2)∫ ∞0 ⟨J(0)J(t)⟩dt. The autocorrelation of J is com-
puted for the small sample under the microcanonical ensemble.
The results show an increase in κ from ∼0.6 W/mK at 0 GPa to
∼1.5 W/mK at 40 GPa (T = 300 K). The heat flow q caused by
the temperature gradient is estimated as q = κ ∇T ≈ κTmax/Ctrise,
where Tmax is the maximum temperature increase achieved in a
Lagrange element and C is, for example, 5000 m/s. Therefore, the
temperature increase caused by heat conduction in a time dura-
tion trise can be estimated: ΔTc ≈ κ(Tmax/Ctrise)(1/ρC CV). Under
the assumption that the maximum temperature increase is not too
high (e.g., 200 K), ΔTc < 0.1 K is negligibly small for trise > 10 ps.
Obviously, ΔTc as a fraction of the total temperature increase is
ΔTc/Tmax < 0.001 for trise > 10 ps and ΔTc/Tmax < 0.000 01 for
trise > 1 ns. If the density is not high enough to lead to an order-
of-magnitude increase in κ,79 then heat conduction in ramp com-
pression can be ignored. In this study, the rise times vary from 10 to
400 ps, for which gradients may not be manifested.

C. Discussion of isentrope and quasi-isentrope
Before proceeding any further, we first present a conceptual

discussion on the deviation from isentropic behavior. Figure 2
illustrates the increase in temperature with density under compres-
sion. It must be emphasized that, unlike plastic deformation with
no pressure, a “perfect” reference isentrope can be established in
dynamic compression from the initial state, along which there is
no irreversible nonaffine deformation or microstructural change, an
example being the conditions expected in pISE. This idealized isen-
tropic path is represented by the solid blue line in Fig. 2. In dynamic
compression, isentropic compression consumes the least energy. By
contrast, in the case of QIC, plastic deformation is inevitable, leading
to a waste of energy in dissipation. The quasi-isentrope yielded by
experiments is shown by the red solid line in Fig. 2. A state C along
the quasi-isentrope can be described by [T(C), ρ(C), γa(C) ≠ 0, . . .],
where T is the temperature, ρ is the density, and γa measures the
inevitable microstructural change. For a given state C, it is possible

FIG. 2. Illustration of the reference isentrope, instant isentrope, and quasi-
isentrope without phase transition. States A and C have the same density, and
states B, D, and E have the same density.

to define a corresponding reference isentropic state A with
identical density, by [T(A), ρ(A) = ρ(C), γa(A) = 0, . . .]. Before
significant dissipation occurs, such as in the case of elastic compres-
sion, the temperature at state A, T(A), can be assumed to be equal
to the temperature at state C, T(C). Along the perfect isentrope, the
temperature is approximated by integrating over a small duration
using the expression dTise∣BA = −T(A)γg(A)dln(ρA/ρB), where γg is
the state-dependent Grüneisen parameter. However, we can only
observe state C, with detailed atomic trajectories, in simulations but
very limited observables in experiments. Hence, an isentropic path
starting from state C is defined as dTise∣EC = −T(C)γg(C)dln(ρA/ρB).
To reach state D on the quasi-isentropic path, isochoric heating
is required to compensate for the dissipation that occurs during
compression from state E. By integrating dT∣DE = dT∣DC − dTise∣EC, the
amount of dissipation can be quantified.

The recovery of the reference isentrope is facilitated by the
accumulated dissipation. In hydrodynamic simulations, the deter-
mination of the differential form dT∣DC for temperature change along
QIC can be expressed as44

dT∣DC = −Tγg(ρ, T) dln(ρ0

ρ
) + T dS

CV(ρ, T) , (1)

where CV is the isochoric heat capacity. The first term on the
right-hand side of Eq. (1) is identical to dTise∣EC. The second term,
on the other hand, pertains to the dissipation contribution. It
is worth noting that the black line, which results from integrat-
ing dTise∣EC = −T(C)γg(C)dln(ρA/ρB), represents an instant isen-
trope rather than the reference isentrope. The difference between
the temperature increase along the instant isentrope and that
along the reference isentrope is given by ΔTerr = ΔT∣EC − ΔT∣BA
= ∫[T(A)γg(A) − T(C)γg(C)]dln(ρA/ρB), which may increase as
the compression proceeds. In general, ΔT∣EB > ΔT∣CA is expected,
because of the difference between states A and C, raising subtle argu-
ments about the reference isentrope. This difference is negligible
when the temperature is as small as <600 K in our simulations.

The reference isentrope should be a fundamental property of a
solid material that remains unchanged under varying compression
methods, as long as there is no path-dependent phase transition. In
our study, we quantify dissipation by rewriting Eq. (1) as

dS = CV(ρ, T) dT
T

+ γg(ρ, T)CV(ρ, T) dln(ρ0

ρ
), (2)

and the entropy can be directly obtained by integrating this equa-
tion along the compressional path. The excess temperature increase
appears as ΔTexcess = ∫ TdS/CV . The recovery of the reference
isentrope is achieved by ΔTise = ΔT − ΔTexcess.

III. INTEGRATED ANALYSIS FRAMEWORK
A. Integrating plastic deformation, microstructural
change, and thermodynamics

Our framework as illustrated in Fig. 3 aims to mine the data,
from the perspective that it is the plasticity that contributes to dissi-
pation and microstructural change. First, the fraction of the plastic
work converted into heat, as the Taylor–Quinney factor, is calcu-
lated. As discussed in Sec. II C, we already have the plastic heat
Q = ∫ ρ

ρ0
TdS = ∫ ρ

ρ0
CV dTexcess on hand according to Eqs. (1) and (2).
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FIG. 3. Illustration of the framework integrating thermodynamics, mechanics, and microstructural analysis.

To quantify plastic work, the Taylor strain condition is utilized to
decompose uniaxial strain εn into an elastic contribution εe

n and a
plastic contribution ε p

n :31,44

dεe
n =

dρ
3ρ
+ dσn − dσt

3G(ρ, T, γa)
, dε p

n = dεn − dεe
n, (3)

in which only the state-dependent shear modulus G is employed.
Density, normal stress σn = σxx, and transverse stress σt = 0.5(σyy
+ σzz) are from molecular dynamics (MD) data. The strain in Eq. (3)
is directly computed from MD simulations as dεn = dρ/ρ. Plas-
tic heating is not considered. According to the Lindemann-like
rule,80 the linear thermal expansion caused by additional heat pro-
duced by plastic work is negligible as estimated by 0.75 × 10−2ΔT/T g
(<0.005). Plastic work dWp = (σn − σt)dε p

n and βint = Q/Wp then
appear as functions of ε p

n .
Second, we try to establish a connection between dissipa-

tion and microstructural change. As well as the part of the plastic
work converted into dissipation, another part is stored as internal
energy for microstructural change (without TS term): for exam-
ple, defect energy in crystalline metals. However, the microstruc-
tural change also contributes to entropy increase by its disorder.
We notice that the entropy S obtained by integrating Eq. (2)
along the compressional path can be decomposed into vibrational
and configurational components.59,73 S directly quantifies the dis-
sipation. Following the Boltzmann relation, we have S = kB ln Ω
∼ kB ln (ΩvΩc) = kB ln Ωv + kB ln Ωc = Svib + Sconf, in which Ωv

and Ωc are the number of vibrational and configurational states,
respectively, and Svib and Sconf are the vibrational and configura-
tional entropies, respectively. To achieve the decomposition, we
further notice that the Helmholtz free energy F containing only

a vibrational contribution can be sampled by the Frenkel–Lad
method,73 the details of which will be discussed in Sec. III B. Thus,
Svib = (U − F)/T (where U is internal energy) is obtained. Then, the
decomposition of ΔS can be approximated by ΔSconf = ΔS − ΔSvib. It
should be emphasized that there exists a correlation between ΔSconf
and microstructural change. Unfortunately, accurate quantification
of this correlation remains challenging.67,68 Borrowing an idea from
statistical physics, here we utilize a local structure analysis method,
Voronoi polyhedron analysis,81 to reveal atomic structural changes.
The mathematical quantification of microstructure is thus made via
local fivefold symmetry (LFFS)82 and Shannon entropy83 so as to link
with ΔSconf.

Specifically in the case of QIC, the above framework has the
capability to accurately determine the increase in entropy, its quanti-
tative relationship with plastic work, and its correlation with changes
in microstructure. Notably, it can uncover the configurational con-
tribution to entropy, thereby enabling a thermodynamic character-
ization of microstructural change, a long-sought goal in materials
science.

B. Thermophysical properties calculation
In the above framework, the shear modulus G, heat capacity

CV , Grüneisen parameter γg , free energy, and other thermophysical
properties are assumed to be state-dependent. This assumption is
also widely utilized in elastoplastic hydrodynamic simulations when
rough estimates are made.18,32 For example, ργg = const is usually
used.84 In our study, state-dependent properties are calculated
directly from atomistic simulation of a small sample with only 4000
atoms instead of by employing phenomenological laws. Irreversible
plastic deformation may impact the physical properties of an
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MG. Six samples are systematically prepared by subjecting the
initial S-Sample to different levels of plastic deformation through
shearing, followed by an un-shearing to a zero-stress state and
subsequent NPT relaxation. The boundary conditions are con-
sistent with those utilized in UC-QIC and pISE. As a result
of the preparation procedure, residual strain is induced in the
samples, which is quantified through atomic shear strain cal-
culations.85 Taking the undeformed S-Sample as the reference
configuration, the average atomic shear strains of these samples
are determined by the Open Visualization Tool (OVITO)86

to be γa = [0.0, 0.0284, 0.0366, 0.110, 0.137, 0.166], respectively.
γa = 0 corresponds to the undeformed sample. Each sample is
subsequently compressed and heated to map the P–T subspace
from 0 to 50 GPa and from 300 to 1200 K in pressure steps of 5 GPa
and temperature steps of 50 K. The mechanical modulus is obtained
by linear fitting of the strain–stress curve under small compression
and shear deformations. The isochoric heat capacity CV = −∂U/∂T
and the Grüneisen parameter γg = (V/CV)dP/dT are obtained by
fitting U–T and P–T curves, respectively, under isochoric heating
(δT = 10 K) from a given (P, T) state. The Helmholtz free energy
F and the vibrational entropy Svib = (U − F)/T are sampled by the
Frenkel–Lad method.73,87 Then, functions of the form H(ρ, T, γa)
= h0[1 + h1ρ/ρ0 + h2(ρ/ρ0)2](1 + h3T + h4T2)(1 + h5γa + h6γ2

a) for
all properties are prepared for use. H(ρ, T, γa) assumes a linear
deviation from ambient conditions with small density, temperature,
and structural changes. hi (i = 0, . . ., 6) are fitting parameters and
are listed in Table I. The detailed calculation of F is discussed
below.

The Frenkel–Lad method samples the Helmholtz free energy
containing only the vibrational entropy contribution of the MG.73

The basis of this method is calculation of the free energy difference
between a state of interest and a reference state for which an exact
solution exists. In this study, an Einstein crystal in which atoms do
not interact with each other via an atomic potential, is chosen as the
reference state. The free energy difference between a state of inter-
est and this reference state is calculated by the construction of a
reversible path connecting a sequence of equilibrium states between
the two thermodynamic states. By the introduction of a coupling
parameter λ ranging from 0 to 1, the Hamiltonian of the system can
change from the Hamiltonian of the Einstein crystal reference state
(EC) to the Hamiltonian of the real system (R):

U(λ) = (1 − λ)UEC + λUR, (4)

where U is internal energy. For the system in the NVT ensemble, the
free energy F is a function of λ:

F(λ) = −kBT ln Q(λ) = −kBT ln∫ e−U(λ)/kBT dr. (5)

The derivative of the free energy with respect to λ can be
obtained as

dF(λ)
dλ

= 1
Q(λ) ∫ e−U(λ)/kBT ∂U

∂λ
dr = ⟨∂U

∂λ
⟩

λ
. (6)

The free energy difference is obtained by integration of this
differential equation:

ΔF = ∫
1

0
⟨∂U
∂λ
⟩

λ
dλ = ∫

1

0
⟨UR −UEC⟩ dλ. (7)

The Hamiltonian of the Einstein crystal reference system has
the harmonic form

HEC =
N

∑
i=1
[ p2

i

2m
+ 1

2
mω2(ri − r0

i )2]. (8)

The free energy of the Einstein crystal can be solved for
analytically as

FEC(N, V , T) = 3NkBT ln( h̵ω
kBT
), (9)

where ω is the oscillator frequency, and the harmonic potential
with spring constant (mω2) is usually utilized in simulations to
describe the Hamiltonians of a reference Einstein crystal. For the
MG of interest here, corrections for re-centering of mass need to be
considered:

FEC(N, V , T)
kBT

= ∑
i=Cu,Zr

xi ln(βkΛ2
i

2π
)

3/2
− 1

N
ln
⎛
⎜⎜
⎝

βk
2π ∑

i=Cu,Zr
xiμ2

i

⎞
⎟⎟
⎠

3/2

− 1
N

ln V + 2.5N ln N − 1
N

ln( N
Nmol

), (10)

where xi is the mole fraction, μi = mi/ ∑
i=Cu,Zr

mi, Λi =
√

βh2/2πmi are

the wavelengths of copper (i = 1) and zirconium (i = 2) atoms, and k

TABLE I. Fitting parameters of thermophysical properties of the model Cu50Zr50. The equation is H(ρ, T , γa) = h0[1 + h1ρ/ρ0 + h2(ρ/ρ0)2](1 + h3T + h4T2)(1 + h5γa +
h6γ2

a), in which ρ is in units of kg/m3, T is in units of K, and γa is dimensionless. CV is the isochoric heat capacity, γg the Grüneisen parameter, B the bulk modulus, G the shear
modulus, Svib the vibrational entropy, and F the Helmholtz free energy containing only a vibrational contribution.

h0 h1 h2 h3 h4 h5 h6

CV (J mol−1 K−1) 28.6 0.252 −0.140 −9.44 × 10−4 4.67 × 10−7 −0.145 0.847
γg 1.166 4.266 −3.500 −7.087 × 10−4 2.38 × 10−7 −1.014 4.623
B (GPa) 300.0 −1.796 1.281 1.029 × 10−4 −1.35 × 10−7 −0.129 5.77 × 10−2

G (GPa) 10.4 1.47 × 10−3 2.045 8.264 × 10−4 4.84 × 10−7 −1.63 5.56
Svib (kB/atom) 3.88 −5.27 0.0017 3.28 6.24 × 10−8 −0.011 0.168
F (eV/atom) −0.247 2.398 −1.348 −2.353 × 10−5 8.14 × 10−8 −5.18 × 10−3 0.0352

Matter Radiat. Extremes 9, 027802 (2024); doi: 10.1063/5.0176138 9, 027802-6

© Author(s) 2024

https://pubs.aip.org/aip/mre


Matter and
Radiation at Extremes

RESEARCH ARTICLE pubs.aip.org/aip/mre

is the spring constant. With FEC and ΔF, the Helmholtz free energy
of the MG is obtained as F = FEC + ΔF, and also the vibrational
entropy Svib = (U − F)/T.

Figure 4 shows several results for the calculated thermophys-
ical properties according to Table I. To discuss the rationality of
these results, a density-sensitive parameter Hρ = (1/H)∂H/∂ρ,
temperature-sensitive parameter HT = (1/H)∂H/∂T, and
deformation-sensitive parameter Hγa = (1/H)∂H/∂γa of the
thermophysical properties are defined. At the ambient states with
small irreversible deformations, it is clear that all these properties
are sensitive to temperature, all except heat capacity are sensitive to
density, and only shear modulus is sensitive to irreversible defor-
mation. These expected scenarios are shown in Fig. 4. Figures 4(a)
and 4(c) show that shear modulus and vibrational entropy are
sensitive to density and temperature. Figure 4(c) also indicates a
clear separation of glass and liquid states on the map, and it suggests
that the glass transition increases with density as expected. The
vibrational entropy is not sensitive to plastic strain, because the
sampling method is irrelevant to configuration, as confirmed by
its small Hγa according to Table I. The deformation-insensitive
isochoric heat capacity as shown in Fig. 4(d) also supports this
scenario. In particular, Fig. 4(b) demonstrates that γg decreases with
increasing density. This trend can be explained by the fact that t
phonons also exist in the MG, despite its lack of long-range order.88

Additionally, ργg = const is not applicable for an MG over wide
density and temperature ranges. This is reasonable, considering
that ργg = const is only a phenomenological law inferred from ASC
experiments that access limited regions of density and temperature

in ρ–T space. Because γg plays a key role in determining the
isentropic temperature increase according to Eqs. (1) and (2), our
method for obtaining γg at high pressure and high temperature may
be applicable for interpretation of QIC experiments. For instance,
γg at high density and pressure can be accurately calculated by
first-principles calculation or machine-learning-enabled MD with
quantum accuracy.

IV. RESULTS AND DISCUSSION
A. Isentrope and the deviation from isentrope
in QIC in terms of temperature

With the help of the framework established above, the quantifi-
cation of dissipation by excess temperature increase is illustrated in
Fig. 5(b), enabling decisive exclusion of alternative dissipative mech-
anisms apart from plasticity. The analysis shows that the process
of pISE results in a minimal ΔTexcess, indicating a near-isentropic
behavior as designed. By comparing Figs. 5(b) and 5(c) in which
the strength is calculated by Y = σn − 0.5(σyy + σzz), ΔTexcess within
the elastic regime in both NEMD-QIC and UC-QIC is negligible,
with NEMD-QIC displaying gradients ∇T and ∇P. As discussed in
Sec. II B, heat conduction does not lead to significant ΔTexcess as
trise > 10 ps, as demonstrated in the elastic regime [Fig. 5(b)]. Also,
the contribution of the bulk viscosity to dissipation in QIC is small
when the magnitude of ∇P is much lower than that at the shock
front. This suggests that the contributions from both heat conduc-
tion (as discussed in Sec. II B) and bulk viscosity to dissipation in
NEMD-QIC are inherently negligible in the elastic regime. After a

FIG. 4. (a) Shear modulus mapped into pressure and density. (b) Grüneisen parameter vs density at 300, 400, 500, and 600 K. (c) Vibrational entropy mapped into pressure
and density. (d) Isochoric heat capacity vs nonaffine atomic strain at different densities and temperatures.
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FIG. 5. (a) Isentrope recovered from P–ρ–T path. (b) Excess temperature increase
ΔTexcess vs density. (c) Strength vs density during pISE, UC-QIC, and NEMD-
QIC with an equivalent strain rate of ∼7.5 × 108/s. The light red box represents
the elastic deformation regime for NEMD-QIC and roughly for UC-QIC. Gray dots
indicate where ΔTexcess starts to increase.

short period elapsing from yielding [as can be seen by comparing
Figs. 5(b) and 5(c)], ΔTexcess in NEMD-QIC and UC-QIC begins
to increase significantly, while the thermal conductivity and bulk
viscosity are not greatly changed by the yielding transition. These
findings convincingly demonstrate that plastic deformation domi-
nates dissipation in a MG subjected to QIC, as well as in crystalline
solids, despite the distinct microscopic mechanisms involved.31,32

By subtracting ΔTexcess, the reference isentrope is recovered
as a substantial and unchanged property of MG, as illustrated in
Fig. 5(a), in which the ΔTise for NEMD-QIC, UC-QIC, and pISE
overlap with each other. In our simulations, we argue that no phase
transition occurs in MG. Unlike crystalline solids, MG structures
lack long-range order (LRO) and exhibit short-range order changes
upon compression, as revealed by Voronoi analysis in terms of
local fivefold symmetry (LFFS) increase.74 The smooth changes in
LFFS without disruption of disordered structures in MG suggest
the absence of a phase transition. The reference isentrope recov-
ered from all NEMD-QIC and UC-QIC simulations close to the
pISE path is thus rational. In addition, it is clear that ΔTexcess in
NEMD-QIC is higher than that in UC-QIC over the whole plastic
deformation, as illustrated in Fig. 5(b). This discrepancy is likely due
to the unique deformation protocol employed in UC-QIC, which
includes periodic and uniform rescaling of atomic positions followed
by a structural relaxation. This rescaling results in an unexpected
portion of strain energy being directed toward the microstruc-
tural subsystem during the plastic deformation regime. A structural
comparison between NEMD-QIC and UC-QIC demonstrates this
significant energy flow (see Fig. S11, supplementary material). Thus,

UC-QIC substantially deviates from a real QIC process represented
by NEMD-QIC, where plastic deformation and structural change
should be taken into account.

B. Rate-insensitive and strain-sensitive
Taylor–Quinney factor

An unexpected finding is revealed in regard to the Taylor–
Quinney factor βint, which quantitatively measures the relation
between plastic work and excess temperature. The results indicate
that βint is insensitive to strain rates but sensitive to strain. All
βint vs plastic strain curves exhibit the same behavior as the plas-
tic strain increases, converging in the vicinity of one another, as
depicted in Fig. 6(b). This outcome contradicts experimental work
conducted by Nieto-Fuentes et al.,53 who found that βint decreases
with strain rates that are about six orders of magnitude lower than
that in our simulations for a variety of metals. Additionally, an incu-
bation period in which βint remains near zero is observed shortly
after yielding. During this period, the plastic work is primarily con-
sumed by microstructural change rather than converted to heat,
in parallel with Figs. 5(b) and 5(c). After the incubation period,
βint increases monotonically with plastic strain and follows an
empirical master curve

βint(εp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, εp < εc
p,

β0 ln( εp

εc
p
), εp ≥ εc

p,
(11)

where εc
p is the ending of the incubation period, and β0 is a fitting

constant. On setting β0 = 0.45 and εc
p = 0.03, Eq. (11) is found to fit

all curves in Fig. 6(b) with satisfactory accuracy. The observed trend
strongly suggests that βint is sensitive to structural change in the
early stage of plastic deformation. As compression proceeds to the
late plastic deformation stage, extrapolation of Eq. (11) suggests that
βint reaches a saturation value of unity at ρ ≈ 1.8. This value is con-
sistent with that typically used in hydrodynamics simulations.31,32

C. Rate-insensitive to rate-sensitive transition
in entropy production

As an indirect measure of entropy production, quantifica-
tion of ΔTexcess reveals an unexpected rate-insensitive to rate-
sensitive transition in entropy production. This is demonstrated in
Fig. 6(a), where, for trise > 100 ps, NEMD-QIC produces ∼100 K
excess temperature at ρ/ρ0 = 1.29, while the relative isentropic tem-
perature is about 100 K. As trise decreases to 40 ps, the excess
temperature increases to around 120 K. As a comparison, adia-
batic shock compression produces ∼370 K, which is approached by
NEMD-QIC as trise further decrease. Surprisingly, the presence of
rate-insensitive entropy production challenges the conventional
understanding obtained from low-strain-rate mechanical tests that
plastic heating behavior is rate-sensitive.51,53 Our simulations
suggest that rate-sensitive ΔT in a single-phase solid subjected to
high-pressure compression can only be achieved at extremely high
strain rates, even though the strength is rate-sensitive over a wide
range of strain rates, while a trend of increase in both yield strength
Y and WP at ρ/ρ0 = 1.29 with decreasing trise is evident.

Phenomenologically, with the quantification of βint, the transi-
tion from rate-insensitive to rate-sensitive entropy production can
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FIG. 6. (a) Excess temperature ΔTexcess at ρ/ρ0 = 1.29 and scaled strength vs rise time trise. A separation between rate-insensitive and rate-sensitive regime is revealed.
(b) Taylor–Quiney factor βint vs plastic strain during NEMD-QIC. (c) Replica distance and fraction of extra cage breakage at yielding vs trise. The separation between
rate-insensitive and rate-sensitive regime is the same as in (a). (d) A cross-section colored by di

X ,Y in a yield replica of the case trise = 67 ps.

be roughly explained by the breakdown of Y/Gy ≈ const instead of
Y , where Y is the yield strength and Gy is the shear modulus at yield-
ing. This can be argued by a simple scaling. It is noted that ΔTexcess
should be proportional to βint ×WP/ρ. This scaling is expressed as

ΔTexcess ∝ βint ×
WP

Y
× G y

ρy ×
ρy

ρ
× Y

G y ∝ βint ×
WP

Y
× G y

ρy ×
Y

G y .

(12)
For all simulated cases, the increase of WP with strain rate

can be attributed to increasing Y (WP/Y ≈ const for all trise). Also,
Gy/ρy ≈ const for all trise holds because of the linear dependence
of the shear modulus on density at low pressures. Therefore, the
following simpler scaling is proposed:

ΔTexcess ∝ βint ×
Y

G y . (13)

The rate-insensitivity requires that βint × Y/Gy be independent
of trise. As previously discussed, it is found that there is minimal
dependence of βint on trise in all cases, as illustrated in Fig. 6(b). As
a result, the magnitude of entropy production can be attributed to
variations in Y/Gy. This relationship is illustrated in Fig. 6(a), where
a transition from rate insensitivity to rate sensitivity of Y/Gy can be
observed, as well as a corresponding change in entropy production.
Thus, Eq. (13) may explain the trend of how entropy production in
QIC varies with strain rate.

The observed strain rate dependence of Y/Gy in MGs is in line
with previous studies. According to the cooperative shear model
(CSM), at low strain rates, a weak rate dependence of Y/Gy in MGs is
expected if yielding is viewed as a fold catastrophe.89 The CSM sug-
gests that MGs contain inherent defects that become activated and
contribute to plasticity upon yielding. Measurements of the yield-
ing strength of an MG in a QIC experiment support this hypothesis,
since they show a lack of sensitivity around γ̇ ∼ 105/s.90 It has been
observed that in many crystalline metals, at higher strain rates, a
transition of Y/Gy from rate insensitivity to rate sensitivity occurs
at γ̇ ∼ 108/s.31,43,91 This transition may indicate a shift in the mech-
anism of yielding from activation of existing defects to nucleation
of new plasticity carriers such as dislocations.21,91 On the basis of
these findings in crystalline metals, it is hypothesized that a similar
transition in the yielding mechanism may occur in MGs.

To further investigate this hypothesis, a concept from statisti-
cal physics known as a replica is employed. Specifically, the distance
from the atomistic replica for each trise(X) to that for trise = 400 ps
(Y only appears as a subscript when representing a replica) is defined
as D2

X,Y = (1/N)∑i di
X,Y = (1/N)∑i (xi

X − xi
Y)2 + (yi

X − yi
Y)2, where

x and y are atom coordinates, and di
X,Y is the spatial distance between

the same atom in different replicas. In an MG, each atom is trapped
in a cage formed by its neighboring atoms. On deformation, cer-
tain cages may break, serving as plasticity carriers. di

X,Y = 1.0 Å
is adopted as a criterion below which the behavior of the cage
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centered on atom i is as the same as that at yielding of trise = 400 ps
compression, and above which its behavior deviates from that at
yielding of trise = 400 ps compression. Similarly, di

X,Y < 1.0 Å should
be expected if the cages centered on atom i both break or both
survive at these two rates. It is supposed that our MG is pre-
pared with born defects. The cages regarded as the born defect may
break at yielding for all rates, and thus their center atom will have
di

X,Y < 1.0 Å. In the scenario of the CSM, such cage breakages
associated with born defects may cooperate, leading to an activa-
tion volume of ∼100 atoms. Atoms with di

X,Y > 1.0 Å can then be
regarded as an extra broken cage by comparison with yielding in
trise = 400 ps compression. The term “broken” here means that the
cage changes in a different way to its behavior at trise = 400 ps, and
so it cannot sustain shear stress after yielding. We observe that the
fraction of extra cage breakage remains as small as 1% in the rate-
insensitive regime [Fig. 6(c)], suggesting that the yielding behavior
for these rates is almost the same as that for trise = 400 ps. Mean-
while, sharp increases in both atom fractions with di

X,Y > 1.0 Å and
the distance between yielding replicas, as well as Y/Gy, are observed
at trise ≈ 150 ps. This suggests that there is an extensive occurrence of
extra cage breakage at high strain rates. For instance, Fig. 6(d) shows
that the extra broken cages are dispersed throughout the bulk of the
yielding replica in the case of trise = 67 ps. Note that the extra break-
ages are not related to born defects and will not cooperate. Therefore,
the activation volume of extra breakage should be as small as several
atoms, which is much smaller than that for the CSM. It is well known
that small activation leads to a higher strain-rate-sensitive factor
m =
√

3kBT/σV∗ (where V∗ is the activation volume). Thus, our
observation provides strong evidence for a transition in the yield-
ing from the activation of born plasticity carriers to a mechanism
aided by the nucleation of new carriers.

From the above discussions, our results indicate the surprising
extrapolation that there should be minimal variation in excess tem-
perature when the rise time is varied from 101 to 102 ns in typical
QIC experiments. This is due to the fact that both scaled strength

and βint are insensitive to strain rate within this range, which may
also hold under experimental conditions. To effectively manipulate
the thermodynamic path, it is necessary to change the initial temper-
ature of the sample or to manipulate the internal structure to control
the yield strength at low strain rates in QIC experiments. Addition-
ally, our data suggest that there may be a significant increase in
excess temperature as the rise time is decreased to the nanosecond
regime or lower in these experiments.92

D. Entropy, configurational entropy,
and vibrational entropy

Direct calculation of the thermodynamic entropy increase pro-
vides a quantification of dissipation in parallel with the excess tem-
perature. In the NEMD-QIC simulations, we observe that, as well
as excess temperature, ΔS at ρ/ρ0 = 1.29 exhibits a transition from
rate-insensitive to rate-sensitive behavior, as depicted in Fig. 7(b).
As trise > 150 ps, ΔS remains constant at ∼0.6 kB/atom at ρ/ρ0
= 1.29, and the production rate is about 2.0 × 10−2kB/atom per GPa.
However, as trise decreases to ∼30 ps, which is comparable to the
adiabatic shock compression wave front width, ΔS at ρ/ρ0 = 1.29
approaches 0.7 kB/atom, with a slight increase compared with that
for rate-insensitive compression. For comparison, we also calculate
ΔS for adiabatic shock compression to ρ/ρ0 = 1.29, with a value of
∼1.6 kB/atom. This is significantly higher than that for all QICs, in
agreement with the thermodynamic theory. This direct quantifica-
tion of entropy reveals that QIC is substantially different from shock
compression, even when the ramp wave width is as small as 30 ps. It
should also be stressed that Eq. (2) decomposes the entropy increase
into an isothermal compression contribution and an isochoric heat-
ing contribution. In the elastic regime, these two contributions
cancel each other out, resulting in an isentropic process, as expected.
On yielding, the positive isochoric heating contribution becomes
dominant over the negative isothermal compression contribution,
leading to an overall increase in entropy.

FIG. 7. (a) Total entropy increase ΔStot, configurational entropy increase ΔSconf, and vibrational entropy increase ΔSvib vs relative density during NEMD-QIC. (b) Entropy
increases at ρ/ρ0 = 1.29 vs rise time. The entropy increases for shock compression (trise = 0 ps) are also shown.
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An advantage of entropy quantification is that it can reveal
how the dissipated energy is partitioned. Entropy is split into two
parts, a vibrational part Svib and a configurational part Sconf, as
shown in Fig. 7(a). From the perspective of the potential energy
landscape (PEL),93,94 Svib arises from intrabasin vibration, while Sconf
arises from interbasin exploration, which is enhanced during plastic
deformation. It is important to note that Sconf is a thermodynamic
measure of structural change, as has been discussed extensively
in the literature.59,63,67,68 We find that the magnitude of ΔSconf in
plastically compressed MG subjected to QICs is on the order of
10−1 kB/atom per plastic strain of 0.1 [Fig. 7(a)]. This is comparable
to that in the melting of an MG.73 This fact suggests that MGs also
undergo rejuvenation under dynamic compression, even though the
increase in density leads to free volume reduction and local order
increase in terms of LFFS. Our result implies that the essential struc-
tural change in rejuvenation is the diversity of local atomic structures
instead of the local symmetry, which will be demonstrated later.

It should be emphasized that the increase in ΔSvib is cou-
pled with ΔSconf. In a highly harmonic approximation, ΔSvib can be
estimated as

ΔSvib = 3N ln [ UK(ρ)
UK(ρ0)

ω(ρ0)
ω(ρ)

],

where N is the number of atoms, UK is the kinetic–vibrational
energy, and ω is the average vibrational frequency. With little struc-
tural change in the elastic regime, the relation UK ∝ ω is established
and leads to ΔSvib ∼ 0. Figure 7(a) shows that ΔSvib is relatively
small in the elastic regime of all QICs. The immediate increase of
ΔSvib on yielding is attributed to vibrational mode softening caused
by structural change,95 which is reflected by ΔSconf. As compression
proceeds, UK ∝ ω may be reestablished, and saturation of ΔSvib is
observed, as in Fig. 7(a). The saturation of ΔSvib in a real QIC is also
reasonable, because ΔTise may totally prevail over ΔTexcess at very
high density. Additionally, the increase in ΔSconf lags behind that
in ΔSvib, but contributes more at ρ/ρ0 = 1.29 to the overall entropy
increase in our low-pressure QICs. This is in agreement with the

continuous evolution of the microstructure of MGs under QIC.
Therefore, it can be concluded that plastic deformation-induced
microstructural change is the fundamental cause of the entropy
increase in MGs subjected to QIC in a low-pressure regime.

E. Microstructural change, configurational entropy,
and effective temperature

An analysis is performed to investigate the relationship
between structural change, thermodynamics, and βint. Microstruc-
tural changes in an MG can be described by LFFS and the Shannon
entropy SShan defined on the LFFS distribution.83,96 As shown in
Fig. 8, an increase in LFFS is observed under QIC with increasing
density. Note that LFFS of an MG usually decreases under normal
plastic deformation without hydrodynamic pressure. This decrease
in LFFS can be explained by the more liquid-like structure associ-
ated with the continuous rejuvenation and an increase in accessible
inherent structures.85,97 Along the rejuvenation direction toward liq-
uid, the configurational entropy should increase.73 Figures 7(a) and
8(a) clearly imply the opposite, i.e., that the configurational entropy
and LFFS all increase with plastic strain under QIC. These striking
results suggest that LFFS may not be able to represent the plasticity
carriers in an MG. However, Figs. 7(a) and 8(b) show a continuous
decrease in SCu

Shan using only a copper-centered polyhedron, and an
increase in Sconf as compression proceeds from yielding. This trend
was also observed by Han et al.,83 who quantified configurational
entropy from PEL diversity sampling and defined SShan in the same
way as we have done. Thus, the Shannon entropy, which character-
izes structural diversity, rather than LFFS, which characterizes the
average local structure, is more suitable to describe the microstruc-
tural changes during plastic deformation of MGs. We also observe
in Fig. 8(b) that at ρ ≈ 1.05ρ0, pressure may dominate the structural
change, causing an abrupt decrease in SCu

Shan.
It is quite interesting that in the rate-insensitive regime, our

Sconf and SCu
Shan fall on almost the same line [Fig. 9(a)], suggest-

ing their equivalence in describing the structural change of MG.
The configurational entropy clearly has a thermodynamic sense,

FIG. 8. (a) Local fivefold symmetry (LFFS) vs relative density under compression. (b) Shannon entropy defined on a copper-centered polyhedron distribution vs relative
density. Only compressions in the rate-insensitive regime are shown.
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while the Shannon entropy is a mathematical description of the
microstructure of our atomic model glass. Since the Shannon
entropy can be considered in terms of the distribution of local envi-
ronments of atoms, it is possible to use atomic force microscopy
to measure the configurational entropy of an MG. A similar mea-
surable microstructural feature, the fractal dimension of dislocation
patterns, is found to increase with plastic deformation.98 Our work
may help relate microstructural characterization with the thermody-
namic entropy of the microstructure, thereby providing constraints
for plasticity models.59,99,100

Another issue of interest is the relation between the configu-
rational entropy and the Taylor–Quinney factor. Figure 9(b) shows
that βint increases monotonically with Sconf on yielding. This is
consistent with Langer’s proposal58–61,63 that βint depends on the
interplay between the configurational subsystem and vibrational
subsystem. As the compression proceeds after yielding, the con-
figurational entropy increases with plastic strain, suggesting that
more and more accessible inherent states and degrees of freedom
are activated by deformation. Thus, it is speculated that plastic
work becomes more easily converted into heat as the configura-
tional entropy increases. Figure 9(b) also shows that βint vs ΔSconf
falls onto almost the same master curve for compressions in the
rate-insensitive regime. The following formula, without any physical
preconditions, fits this master curve very well:

βint = 1 − exp [−(ΔSconf − ΔSC

a
)

b
]. (14)

The fitting parameters ΔSC, a, and b are −0.044, 0.234, and
0.662, respectively. It is interesting that exp [−(ΔSconf−ΔSC

a )b](b < 1)
is of Kohlrausch–Williams–Watts (KWW) form, which is usually
used in describing relaxation of glasses.

The effective temperature Teff is defined as the conju-
gate of the configurational entropy, Teff ≡ ∂UC/∂Sconf,59,100 where
UC is the configurational energy, or, less accurately, “defect” energy,
while, obviously, T is the conjugate of the vibrational entropy,

T ≡ ∂UV/∂Svib, where UV is the internal energy minus UC. We sim-
ply calculate UC as Wp − Q = (1 − βint)Wp. Figure 10(a) shows
that UC increases significantly after yielding and decreases slightly in
late compression, while Sconf continues increasing. This suggests that
the energy storage capability of the configurational subsystem of an
MG is limited during QIC compression. Polynomial functions are
used to fit the data in Figs. 7(a) and 10(a) (replacing relative
density with plastic strain). With these polynomials, the effective
temperature is calculated as

Teff ≡
∂UC/∂εp

∂Sconf/∂εp
.

The trend of decreasing Teff with plastic strain after yielding
is depicted in Fig. 10(b). The extremely high Teff on yielding can
be considered to be a result of mechanical rejuvenation associated
with yielding.69,70 After yielding, the fact that Teff gradually decreases
indicates that the physical aging effect starts to favor mechani-
cal rejuvenation,24,26 which is expected in plastic deformation of
MGs. Teff becomes lower than the thermodynamic temperature at
εp ≈ 0.05 and becomes negative at εp ≈ 0.09, at which point UC starts
to decrease, suggesting a unique nonequilibrium state. The entropy
of the configurational subsystem becomes a nondecreasing func-
tion of energy at εp ≈ 0.09. Teff should have a similar trend to that
of T.59 The higher the value of Teff, the more disordered should
the configurational subsystem be. In this sense, the most disor-
dered state is expected to occur at yielding, which causes an extreme
mechanical rejuvenation in MGs, and the configurational subsys-
tem evolves toward the direction of order after yielding, while the
configurational entropy keeps increasing. Note that Fig. 8(a) indeed
indicates that the structure of an MG under QIC evolves toward
greater and greater order, characterized by increasing LFFS. This
suggests that the heat capacity for the configurational subsystem is
first negative and then positive under QIC. Unfortunately, to the best
of our knowledge, there is no appropriate theory that can explain
our results, even though we have successfully obtained the effective
temperature as expected from Ref. 59.

FIG. 9. (a) Configurational entropy vs Shannon entropy defined on copper-centered polyhedron distribution. (b) Taylor–Quinney factor (TQF) vs configurational entropy
change during plastic regime for NEMD-QIC. Only compressions in the rate-insensitive regime are shown. Black solid lines are fitting curves.
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FIG. 10. (a) Configurational energy vs plastic strain. (b) Effective temperature and temperature vs plastic strain. Only compressions in the rate-insensitive regime are shown.

V. CONCLUSION
We have presented a framework for the analysis of the ther-

modynamic path undergone by a metallic glass subjected to com-
pression and to provide insight into plastic heating. Using this
framework, it is possible to accurately recover the same isentrope
of the initial sample from P–ρ–T paths obtained by both isotropic
compression and NEMD simulations. The deviation from the isen-
trope is quantified using the excess temperature and thermodynamic
entropy. We have demonstrated that this deviation stems from plas-
ticity under QIC of metallic glass and quantifies the portion of plas-
tic work being dissipated. Our results suggest that rate-insensitive
entropy production under compression with strain rates achievable
experimentally is of the order of 10−2kB/atom per GPa. However,
at higher strain rates, a transition from rate-insensitive to rate-
sensitive entropy production is observed, which is attributed to the
breakdown of the relation Y/Gy ≈ const. In particular, the entropy
is partitioned into configurational and vibrational entropies. Thus,
the framework can provide a thermodynamic variable to describe
microstructural change. The configurational entropy is found to
be proportional to the Shannon entropy form describing structural
change. Overall, our framework provides a comprehensive under-
standing of compression, plastic deformation, structural change,
entropy production, and their relationships in QIC. Furthermore,
it greatly extends the capability of atomistic simulations to interpret
QIC experiments.

SUPPLEMENTARY MATERIAL

See the supplementary material for details of sample reparation,
NEMD simulation methods, strain decomposition, free energy cal-
culation, microstructure characterization, and size/strain rate effect
check.
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